
Linear Regression

Mads Møller

LinkedIn: https://www.linkedin.com/in/madsmoeller1/

Mail: mads.moeller@outlook.com

This paper is the first in a series, which are going to go into the depth behind behind the mathematics,

statistics and code implementation of different machine learning algorithms. We will use Python as our

framework for implementing these algorithms. At the top of each paper a link to the GitHub Repository

including the code will be available. I hope you will enjoy this series of papers and hopefully get a good

understanding of how the various algorithms works.

1 Univariate Linear Regression

Before we go into linear regression let’s define what we mean about regression. Regression is all about

modelling a target value, which we denote y based on independent variables, which are going to be

denoted by X. A univariate linear regression model is characterized by one independent variable (x) and

a dependent variable (y). To understand the mathematics behind simple linear regression we will inspect

figure 1 below:

Figure 1: Linear Regression

We refer to the blue line from figure 1 as the best fit straight line. What linear regression is really all

about is finding the line that fits our observations best. A line can be written mathematically as:

ŷ = w0 + w1x (1)

1

https://www.linkedin.com/in/madsmoeller1/
mailto:mads.moeller@outlook.com

Here x is called our independent variable (input variable), w1 is called the weight and w0 is called the bias

term. Therefore, we want to find those values of w0 and w1 which gives us the best model fit. In order to

find the best line we have to set up a formula which can figure out what line minimizes the distance from

all points to the line. First of all we need to get familiar with two essential machine learning principles

called cost functions and gradient descent.

1.1 Cost Function

If we inspect figure 1 again, the blue line represent predictions of our dependent variable y. So the

problem that linear regression solves is fitting the line which minimizes the distance between the actual

values (observations on the graph) and our predicted values (the line). This is also referred to as the

cost. Therefore, the function we are going to minimize is called the cost function. In linear regression we

define our cost function as:

J(w0, w1) =
1

n

n∑
i=1

(ŷi − yi)2 =
1

n

n∑
i=1

((w0 + w1xi)− yi)2 (2)

We denote our cost function with ”J”, the predicted values as ŷ, the observations from our dataset as y

and the number of observations n. This cost function is also referred to as the mean squared error or

just MSE. By using MSE we are going to minimize the error between the predicted value and the actual

value. As seen from equation 2, we square the error difference and sum over all the n datapoints and

divide that value by the total number of data points. The reason of why we square the error difference

is because we need to be able to handle negative differences and add that value to our cost as well.

However, in order to minimize our cost function we need to figure out how to change the weights w0 and

w1, such that our cost is minimized. To understand how to change the weights properly we have to define

an optimization algorithm for our cost function.

1.2 Gradient Descent

Gradient Descent is a simple optimization algorithm. An optimization algorithm which tries to minimize

our cost function. The math behind Gradient Descent is a simple process:

wi = wi − α
∂J

∂wi
(3)

Gradient Descent repeats this process until convergence. All of the weights has to be updated simulta-

neously, so for our simple univariate linear regression the two weights i = {0, 1} are going to be updated

simultaneous. The variable α is called the learning rate, and the value of α decides how much the weights

are being changed in each iteration. The partial derivatives w.r.t. the weights can easily be calculated

from equation 2:

∂J

∂w0
=

2

m

m∑
i=1

(ŷi − yi) (4)

2

∂J

∂w1
=

2

m

m∑
i=1

(ŷi − yi)xi (5)

The intuition of gradient descent is easy to illustrate. Let’s inspect figure 3.1:

Figure 2: Gradient Descent

The most intuitive way of understanding Gradient Descent is trying to imagine a ball on a graph, as

in figure 3.1. The graph is our cost function w.r.t. the weight w. The ball represents each iteration in

Gradient Descent for this example. The ball calculates the slope of our function for that specific place

on our cost function (the weight). If the slope is positive our weight will decrease with the slope times

our learning rate and our ball will roll down, which is seen in equation 6. On the other hand, if our slope

is negative our weight will increase with the slope times the learning rate.

The cost function can be a very complex function, which is the case in figure 3.1. Here Gradient Descent

converge to a local minimum, which means that our cost could have been reduced even more. To avoid

this one could change the learning which indicates how big a step we want to change our weight in each

iteration. However, a too high learning rate can can also lead to a situation where our cost function

cannot converge and find a minimum. However for a linear regression model as ours gradient descent will

work just fine. For more complex machine learning models which we will cover later, there are better

optimization algorithms to avoid ending up in a local minimum.

2 Multivariate Linear Regression

We have seen the fundamentals of a simple univariate linear regression. This can easily be generalized to

a multivariate situation. We now have the following situation with n features/columns:

ŷ = w0 + w1x1 + w2x2 + · · ·+ wnxn =

n∑
i=0

wixi = wTx (6)

3

Where w =


w0

w1

...

wn

 ∈ Rn+1 and x =


1

x1
...

xn

 ∈ Rn+1

As in the case of simple univariate linear regression we aim to find the optimal weights such that the

regression line fits our data best (has the minimum cost). For linear regression the optimal weights can

be found analytically with what is called the normal equation or we can use gradient descent.

2.1 Normal Equation

One could imagine our feature vector from earlier containing multiple (or all) rows from our data. Let

us imagine we have a dataset with n features and m rows. From equation 6 we now have:

ŷ︸︷︷︸
m×1

= X︸︷︷︸
m×(n+1)

· w︸︷︷︸
(n+1)×1

(7)

We can now rewrite the least squares cost function from equation 2:

J(w) =
1

n
· (X · w − y)T (X · w − y)

=
1

n
((X · w)T − yT)(X · w − y)

=
1

n
((X · w)T (X · w)− (X · w)T y − yT (X · w) + yT y)

=
1

n
(wTXTX · w − 2(X · w)T y + yT y)

(8)

Our least sqares cost function is a convex function. Therefore in order to find the values of w, which

minimizes the cost we can simply use calculus:

∂J

∂w
= 2XTX · w − 2XT y = 0⇐⇒ XTX · w = XT y (9)

We now assume that the matrix XTX is invertible, such that we can get an expression for our vector of

weights:

w = (XTX)−1Xy (10)

This equation is called the normal equation. In cases of a small number of feautures the normal

equation has been proven to work more effective than applying gradient descent.

2.2 Multivariate Gradient Descent

We will now generalize gradient descent from section 1.2. The updates from gradient descent are exactly

the same as in the case of univariate linear regression. However, we can generalize the derivatives from

equation 5 such that gradient descent has to simultaneously update the weights using gradient descent:

wj = wj − α
2

m

m∑
i=1

(ŷ(i) − y(i))x(i)j (11)

4

Gradient descent for multivariate linear regression can now easily be implemented. One has to be aware

that x0 = 1 in order to correctly implement the algorithm. In practice we will add a column of ones to

our feature matrix X to handle this.

3 Implementation of linear regression

For our implementation of linear regression we will firstly implement the algorithm from scratch. I like

to use Object Oriented Programming when coding these algorithms from scratch. If you are not

familiar with the concepts of object oriented programming i will recommend you to read this article

before trying to understand the code implementation. Afterwards we will see how linear regression can

be implemented using the Python machine learning library Scikitlearn.

3.1 Implementation - From scratch

For implementing linear regression without fancy machine learning packages we are going to use the

following libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

The data we are using only contain an independent- and a dependent variable:

data = pd.read_csv('LR_data.txt', header = None)

X = data.iloc[:, 0]

y = data.iloc[:, 1]

We are now ready to create a Linear Regression class:

class LinearRegression:

def __init__(self, X, y):

self.m = len(y)

self.X = np.vstack((np.ones(self.m), X)) #adding column of ones to X

self.y = y

self.w = np.zeros(self.X.shape[0]) #weighs initialized as zero

We will now create some functions within our LinearRegression class. We are going to create two

functions for visualization, a cost function and gradient descent implemented with equation 11:

def createScatter(self):

if self.X.shape[0] == 2:

plt.figure(figsize=(19.20,10.80)) #HD

plt.scatter(self.X[1], self.y, s = 30,color='darkblue', marker = 'o')

plt.show()

5

https://realpython.com/python3-object-oriented-programming/

else:

print(f'Cannot create scatter plot for multivariate linear regression.')

def cost(self):

return 1/self.m*sum((self.X.T.dot(self.w)-self.y)**2)

def gradientDescent(self, alpha = 0.01, iterations = 1500):

cost_iteration = []

for i in range(iterations):

cost_iteration.append(self.cost())

self.w = self.w - alpha*2/self.m * self.X.dot((self.X.T.dot(self.w)-self.y))

return self.w, cost_iteration

def plotLinearRegression(self, pltLabel = 'Linear Regression', xL = "", yL = ""):

y_pred = self.X.T.dot(self.w)

plt.figure(figsize=(19.20,10.80))

plt.scatter(self.X[1], self.y, s = 30,color='darkblue', marker = 'o')

plt.plot(self.X[1], y_pred, color='blue')

plt.xlabel(xL)

plt.ylabel(yL)

plt.title(pltLabel)

plt.show()

This is all of the code for implementing our first machine learning algorithm. Let us try to see how our

algorithm works for our dataset:

LR = LinearRegression(X, y)

LR.createScatter()

6

w, costs = LR.gradientDescent(iterations = 1500)

LR.plotLinearRegression(pltLabel ="")

print('weights: ', w)

weights: [-3.87813769 1.19126119]

3.2 Implementation - Scikit-Learn

Scikit-Learn is a machine learning library for Python, propably the most used one. Implementing machine

learning models are easy using Scikit-Learn. You just have to learn the syntax. We will import the

following libraries:

import pandas as pd

import numpy as np

from sklearn.linear_model import LinearRegression

In order to use Sklearn’s algorithm you have to know how to prepare the data for the specific algorithm.

Therefore, for linear regression we need to reshape our inputs such that they fit the algorithm:

data = pd.read_csv('LR_data.txt', header = None)

X = np.array(data.iloc[:, 0]).reshape(-1, 1)

y = np.array(data.iloc[:, 1]).reshape(-1, 1)

Now we can implement the algorithm for our dataset:

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X, y)

7

Let us take a look on the weight from Sklearn’s fit:

print(regressor.intercept_)

print(regressor.coef_)

weights: [-3.89578088 1.19303364]

The weight are pretty similar for Scikit-Learn implementation compared with our algorithm we made

from scratch.

8

